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Construction of Modular Branching Functions from 
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We use the single-particle excitation energies and the completeness rules of the 
3-state antiferromagnetic Potts chain, which have been obtained from Bethe's 
equation, to compute the modular invariant partition function. This provides a 
fermionic construction for the branching functions of the D 4 representation of 
Z4 parafermions which complements the bosonic constructions. It is found that 
there are oscillations in some of the correlations and a new connection with the 
field theory of the Lee-Yang edge is presented. 
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1. I N T R O D U C T I O N  

The theory of integrable quan tum spin chains was initiated by Bethe in 
1931 (1) in his s tudy of the spin- l /2  Heisenberg antiferromagnet.  F r o m  that  
beginning, part icularly-in the last 20 years, an enormous  number  of  one- 
dimensional  quan tum spin systems have been discovered which, along 
with their two-dimensional  statistical counterparts ,  have the remarkable 
proper ty  that  their energy eigenvalues are given by the solutions of a 
system of equat ions which have become known  as Bethe's equations:  

( - 1 )  M+I V s i n h ( 2 j _ i S T ) q N  L s i n h ( 2 j - 2 k - i T )  
(1.1) 

Here M is the number  of  sites in the chain, N and L are related to M (- 
typically N =  M or 2M),  and S and 7 are parameters  which characterize 
the specific models. 
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One of the features derived from the Bethe equations is that in the 
limit M ~ ~ the spectrum of low-lying excitations Eex above the ground 
state is expressed in terms of a set of single-particle levels e,(P) depending 
on a momentum P and combined with a set of rules as 

E e x - E ~ s  = ~ e~(Pi) (1.2) 
�9 , r u l e s  

P =  ~ P~ (1.3) 
~t, r u l e s  

and almost without exception one of the rules of combination is a "Fermi" 
exclusion rule: 

P~r if iv~j (1.4) 

The form for the energy levels (1.2) and (1.3) is referred to as a quasi- 
particle spectrum. Furthermore, in many of these spin chains one or more 
e~ vanish as P ~ 0, 

e(P) ~ v [P[ (1.5) 

where v is positive and is called the speed of sound or the Fermi velocity. 
Much more recently, in 1984, a powerful new formalism was invented (2) 

to study those integrable systems for which there is no mass gap and 
(1.5) holds. This method, known as conformal field theory, is more 
axiomatic. It deals with a continuum approximation to the spin chain 
(or two-dimensional statistical system) and instead of starting from a 
Hamiltonian it starts from a symmetry principle such as the Virasoro 
algebra or Kac-Moody algebra, supplemented by modular invariance, 
which captures many of the essential features associated with the 
integrability of the systems described by Bethe's equation (1.1). 

One of the main objects of computation in conformal field theory 
is the partition function, which is expressed (3'4) in terms of Virasoro 
characters or (more generally) branching functions bj(q) as 

Z = ~ Ik.tbk(q) b,(gl) (1.6) 

where Ik.t are nonnegative integers. Here q (4) refers to the right (left) 
moving excitations with 

q, q = e -2~v/MkBr (1.7) 

where T is the temperature and k B is Boltzmann's constant. 
The Virasoro characters and branching functions bi(q) are solutions to 

the equations of modular transformation. ~5-8~ Their construction typically 
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starts with one or more free boson Fock spaces, and then excludes certain 
null vectors. They are typically given by explicit formulas with several 
powers of the product 

Q(q) = 1~ (1 - q") (1.8) 
n = l  

in the denominator, and a power series in q in the numerator, times a 
fractional power which is usually written a s  q--e/24+hk. Here the constant c 
is referred to as the central charge, and hk are known as the conformal 
dimensions. 

The question now arises as to the relation between the solutions of 
Bethe's equations and the results of conformal field theory. In particular, 
one wants to compute the partition function (1.6) starting from Bethe's 
equations (1.1) (or related functional equations). Recently an important 
advance in this project was made by Kliimper and Pearce, ~9'1~ who com- 
puted the central charge and conformal dimensions for the AN+ 1 series of 
the A ~1) models classified by Pasquier.~ However, the computation of the 
full character expansion (1.6) and clarification of its relation to the quasi 
particle energy spectrum (1.2) is still lacking. 

It our purpose here to complete this project and to compute the full 
partition function (1.6) for a particular quantum spin model: the antiferro- 
magnetic 3-state Potts chain. In particular, we will show that the partition 
function is constructed from the single-particle levels of (1.2) which satisfy 
the Fermi exclusion rule (1.4). This provides a physical interpretation of 
the model, which complements the usual computation that starts with free 
bosons. The result of conformal field theory, as obtained by Pearce, ~ is 
that the partition function of the spin system is 

Z = ~ e-E"/kB~= e-Me~ 4 (1.9) 

where eo is the ground-state energy per site (~3) and Zp[4 is the D4 represen- 
tation of the Z4 parafermionic partition function of ref. 14: 

Zpf4 = [b~ + b~ [bo~ + b.~ 

+ 4b~ b~ + 2b~(q) b~(~) + 2bZ(q) b2(~) (1.10) 

with b~ given in one of the equivalent bosonic forms of (2.25), (2.27), and 
Appendix B. We here obtain (1.10) starting from Bethe's equation (1.1) for 
the finite lattice and obtain fermionic representations for b~ given by (3.13) 
and (3.19) for bo ~ b~ and b ~ in Q = 0  and (4.15) for b~ and b~ in Q =  _+1. 
In Q = 0  the form (3.13) agrees with the form of the branching functions 
of A] 1) given by Lepowsky and Prime. ~5) 
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Our method is to combine the results of ref. 13, which derives the 
spectrum of the antiferromagnetic 3-state Potts model of the form (1.2), 
starting from the Bethe equation derived by Albertini, (16) with the 
completeness study of ref. 17 and the finite-size corrections of ref. 10. In 
Section 2 we summarize the results of these papers that are needed here, as 
well as the conformal field theory predictions for the model. In Section 3 
we compute the partition function in the channel Q = 0 and in Section 4 we 
do the same in the channel Q = 1. We conclude in Section 5 with a discus- 
sion of the physical implications of our results. We also discuss the 
oscillations which are predicted to occur in the correlation functions, and 
a connection with the field theory (18'19) of the Lee-Yang edge (2~ of the 
Ising model. 

2. FORMULATION 

The 3-state antiferromagnetic Potts chain is specified by the Hamiltonian 

2 M 
H = ~  j~=I {Xj--~ X;-~-ZjZ;+I-~ Z;Zj+I} (2.1) 

where 

X j = I | 1 7 4  ... | X |  ... |  (2.2) 
j th 

Zj= I Q I |  ... | Z @ ... |  (2.3) 
jth 

Here I is the 3 x 3 identity matrix, the elements of the 3 x 3 matrices X and 
Z are 

Xj, k = 6j, k+ 1 (mod 3) (2.4) 

Zj, k = 6j, kco j -  1 (2.5) 

03 = e 21ri/3 (2.6) 

and we impose periodic boundary conditions ZM+I = Z 1. 

This spin chain is invariant under translations and under spin rota- 
tions. Thus the eigenvalues may be classified in terms of P, the total 
momentum of the state, and Q, where e 2~iQ/3 is the eigenvalue of the spin 
rotation operator. Here P - -2nn /M,  where n is an integer 0 ~< n <~ M - 1 ,  
and Q = 0 ,  _+1. Furthermore, because H is invariant under complex 
conjugation there is a conserved C parity of • 1 in the sector Q = 0 and the 
sectors Q = • are degenerate. 
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This spin chain is integrable because of its connection with the 
integrable 3-state Potts model of statistical mechanics. The eigenvalues 
satisfy functional equations (16'21-23) which are solved in terms of a Bethe 
equation (1.1)(16) with 

N=2M, 

and 

7 = g/3, S = 1/4 (2.7) 

L = 2 ( M - I Q ] )  for Q = 0 , + I  (2.8) 

In terms of these 2k, the eigenvalues of the transfer matrix of the statistical 
model are 

[ sinh(ni/6)sinh(gi/3) ]M L sinh(2--2k) (2.9) 
A(2) = Lsinh(gi/4 _ 2) ~ +  2)J l=[ 1 sinh(ni/12 + 2~) 

the eigenvalues of the Hamiltonian (2.1) are 

( E = k=l cot i2k + ]~ x//~ 

and the corresponding momentum is 

(--i~)_ [i sinh(2k + ~i/12) 
eiP=A ~ --k=lsinh(2k--ni/12) (2.11) 

These equations have been solved to find the order-one excitation 
energies. (13) The results are expressed in terms of three single-particle 
excitation energies: 

For P ~ 0 ,  all three excitations are of the form (1.5) with 

v=3/2  (2.13) 

Here and in the remainder of the paper we take M to be even. 

822/71/5-6-3 
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1. 
(1.3), 

and 

where 

Kedem and McCoy 

For Q = 0  the energies and momenta are of the form (1.2) and 

E({p}~}, {pj-2~}, {p;~})_E~s = 
m~ 

Y. ~ e=(Pfl (2.14) 
~ = 2 s ,  - -  2 s ,  n s  j =  1 

met 

p = pO + E Z P~ (2.15) 
~ = 2 s ,  - -  2 s ,  n s  j = l  

M 
pO = Pas = -~- n mod 2re (2.16) 

rn2~+m_2s is even (2.17) 

P~', P7  2s, and PT~ obey the Fermi exclusion rule (1.4) and they lie in the 
ranges 

O~<p2~<3n (2.18a) 

O<~Pf2~ <~ (2.18b) 

0 ~< P~.~ ~< 2~ (2.18c) 

We also note that the C parity of the ground state is 

C~s = ( - 1) M/2 (2.19) 

and the C parity of an arbitrary state is 

C / C G s  = ( - 1)re"s+ m-2, + (m2s + .,-2,~/2 (2.20) 

2. For Q =  +1 we must consider m2sWm_2s to be both even and 
odd. When mzs q-m_2s is even there are two spectra of the form (2.14) and 
(2.15). In one pO = Pos and in the other p0 = PGs + re. In both cases the P~. 

J 

obey (2.18). When m2s + rn_2, is odd, there are agai n two spectra of the 
form (2.14) and (2.15). In each case P ~  In one case P~ satisfies 
(2.18), while in the other case - P ~  satisfies (2.18). 

The conformal field theory predictions for the model can be obtained 
by noting that the 3-state Ports model is the critical D 4 model in the 
classification of Pasquier. ~ The central charge and the conformal dimen- 
sions of the primary fields are thus obtained by specializing the finite-size 
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computations of the AN+ 1 model of Kliimper and Pearce (1~ to the case 
N =  4 and using an orbifold construction (24'25) to find the results for D 4. 
The general result for AN+ 1 at the boundary of the I/II regime is that the 
central charge is 

2 ( U -  1 ) 
c - - -  (2.21) 

N + 2  

and the conformal dimensions are 

ht m -  l ( l +  2) m 2 
4 ( N + 2 )  4N for ]ml ~<l (2.22) 

which are the same as those of the Z N parafermion conformal field 
- -  N - - I  theory. (26'27) Using the symmetry h i - h u _ m ,  we find for N =  4 

c = 1 (2.23) 

and 

h ~ = 0, h o = 3, h ~ = 1, h 2 = �89 h~ = ~ (2.24) 

where the first three conformal dimensions occur in Q = 0 and the last two 
in Q = +1. Moreover, the modular invariant partition function is that of 
the D4 parafermion model, (14) (1.10) where the branching functions btm can 
be obtained by specializing to N = 4 the Hecke indefinite form of Kac and 
Peterson(7) of (A ~l))u / U(1 ), 

btm = Q(q )  -2  qt(t + 2)/4(N + 2)- m2/4N - c/24 

X [ ( ~ 0  ~ -  ~ <~)  (-1)sqs(~+ 
s n ~ > 0  s < 0  n 0 

+ ( > ~  ~ - ~  ~ < ) ( - 1 ) S q  ~(~+1,/2+('+ 
s 0 n > ~ 0  s ~ < 0  n 0 

1 ) / 2 + ( l + l ) n + ( l + m ) s / 2 + ( N + 2 ) ( n + s ) n  

1 )n + ( l--  re)s~2 + (N  + 2 ) ( n  + s ) n ]  

..A 

(2.25) 

(2.26) 

blm is given in ref. 28, but for our 
specialization which only occurs for 

0 0 
bo - b4 - gloo/q 

(2.27) 
b 2 = f3;2/r/, 2 b2 = f3,1/q 

for ]m[ ~</, and using the symmetries 

_ _  N - - I  b ~ = b ' _  m = b ~ +  2~v--bN_,n 

otherwise. An alternative form for 
purposes the simplest form is the 
N=4,(8) 

bo o + b ~ = f3,o/r/, 

b2 ~ = f3.3/2q, 
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where 

and 

r / =  ql/24 Q(q) (2.28) 

fa, b = ~ q a(n+b/2a)2, ga, b = ~ (--1)nq a(n+b/2a)2 (2.29) 
n =  - -  r  n =  - -  o o  

This form has a simple origin in the Gaussian model with r =  (3/2) 1/2, 
which we give in Appendix A. For  comparison with the expansions of 
subsequent sections, we list the first terms of (2.27) as 

ql/24b~ --- (1 + q2 + 2q3 + 4q4 + 5q5 + 9q6 

+ 12q 7 + 19q 8 + 25q 9 + 37q 1~ + " ') (2.30a) 

q1/24b~ = q3/4(1 + q + 2q 2 + 3q 3 + 5q 4 + 7q 5 + 12q 6 

+ 16q 7 + 24q 8 + 33q 9 + 47q 1~ + -" ") (2.30b) 

q1/24b~ = q(1 + q + 3q 2 + 3q 3 + 6q 4 + 8q 5 + 13q 6 

+ 17q 7 + 27q 8 + 35q 9 + 51q 1~ + ..-) (2.30c) 

q1/24b~ = ql/3(1 + 2q + 3q 2 + 5q 3 + 8q 4 + 13q 4 + 19q 6 

+ 28q 7 + 41q 8 + 58q 9 + 81q 1~ + .. .) (2.30d) 

q1/24b22 = ql/2(1 + q + 3q 2 + 4q 3 + 8q 4 + l l q  5 + 18q 6 

+ 25q 7 + 38q 8 + 52q 9 + 76q 1~ + " ") (2.30e) 

We finally note that there is an alternative way to obtain these confor- 
mal field theory predictions which utilizes W4 algebra (29) and is related to 

(1) (1) the G K O  construction (A~'))I x (A 3 )I/(A 3 )2- The branching functions 
have been computed from this construction in terms of three-dimensional 
sums  (30-32) which, for later comparison, we give in Appendix B. The equality 
of these branching functions with those of (A ~1))4/U(1 ) is a consequence of 
level rank duality. ~ 

3. BRANCHING FUNCTIONS FOR Q = O  

The partition function for the Hamiltonian (2.1) is, by definition, 

Z = ~, e -  E~/kaT= e -  e~s/kBr ~ e - ( e , -  e~s)/kBr (3.1) 
n 

where, for M--* oo, (1) 
Eos = Meo - -d--~ + O - -~  (3.2) 
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and from ref. 10, c = 1. To obtain the relation with the modular invariant 
partition function of conformal field theory we must evaluate (3.1) in the 
limit M--* 0% T--. 0 with M T  fixed. We intend to carry out this evaluation 
by making use of the quasiparticle energy spectrum (2.14). 

There are, however, two questions that must be addressed before we 
can do this. The first is that in order for (2.14) to specify the energy levels, 
the momenta P2 must be discretely specified on the finite lattice. The 
second is that the evaluation leading to (2.14) is only correct to order one 
as M ~ 0% and hence in order to agree with ref. 10, it may be necessary to 
add some term of the order of 1/M which is independent of P2 but will in 
general depend on rn2~, m_2,, and m,,. These considerations are different 
f o r Q = 0 a n d Q = _ _ _ l .  

We consider in this section Q = 0. We find from the previous study (17) 
of the completeness of the solutions of (2.1) that, for given m2s, m_2,, 
and m,~, 

3M m2~+m_2~ values (3.3a) takes ~ - m , ~  2 ~s 

M m2s + m_2s values (3.3b) P7 2~ takes ~ - -  m,,~ 2 

and 

P~ takes M -  m,,~- m2s - m_2~ values (3.3c) 

This will be the case if P~ satisfies 

( ) ~ ( +m2s+m-2s+ ) rtM rn,, + m2*+2-2s-q- 1 ~<PY*~<37t-~ m,~ 2 1 (3.4a) 

= ( m2*+m-2* ) )@./( m2*+ ) 
~r m, ,+  2 +1 <~e}-2s~n- mnsq- 2m-2"+1 (3.4b) 

7~ /'g 
~ ( m n , + m z s + m _ 2 , + l ) < ~ P ~ . * < ~ 2 = - ~ ( r n , , + m 2 s + m _ 2 s + l )  (3.4c) 

where the spacing between allowed values for P~ is 2rc/M, the Fermi 
exclusion rule (1.4) holds, and mz~+ m_2sqs even. It may be verified that 
this choice of P~ exactly reproduces the correct number of momenta of 
Table 4 of ref. 17 for each allowed set of m2s, m_2s, and mn,. 

Since M --* oo and T--* 0 with M T  fixed, only those values of P~. where 
e~,(P) is small of the order 1/M contributes to (3.1). This occurs for 

P ~ O  for o~=2s,--2s, ns (3.5a) 

P72',-, r~, P~.S,-~ 2~, P}S.-~ 3~ (3.58) 
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where we may linearize e~ (P) near the endpoints (3.5) as 

eo:(P) ": vP '~ for P~ near zero 

e_z~(P) ~ v(~ - p -2s )  for p-2~ near zt 

e,,~(P) ,.,., v(2rc - pn,) for P~" near 2re 

and 

(3.6a) 

(3.6b) 

(3.6c) 

ez~(P) ~ v(3rc - p2~) for p2, near 3re (3.6d) 

t be the number of P~ near zero and m~ be the number Thus we let m E 
of P~ near the endpoints (3.5b). We note that 

l r rn ~ + m ~, = m ~, 

We also note that if 

(3.7) 

m~s + m~2s is odd (3.8) 

then from (2.15) the total momentum of the state is macroscopically shifted 
n from the ground-state value PGs. These states are expected to make 
oscillatory contributions to the correlation functions. 

Consider first the case where all m ~ = 0  (which by symmetry is 
identical to the case ml~ = 0) and evaluate the partition function (3.1) using 
(2.14), (3.4), and (3.6) in the case C/Cos = 1, where, by (2.20), 

' + rnt_2s + (m~, + m~ 2,)/2 is even (3.9) 

We present in Table I the terms from this construction up through order qS, 
where we see that they agree with the corresponding terms from the 
branching function ql/Z4b~ of (2.27). This equality has been verified to order 
q2OO and thus we conclude that this construction correctly gives the 
branching function b ~ 

To obtain a formula for b ~ from the construction, let P,~(m, n) denote 
the number of distinct ways that the integer n can be additively partitioned 
into m distinct parts. Then, modifying the usual construction of a free Fermi 
partition function in terms of Pa(m, n) to account for the momentum 
exclusion rule (3.4), we find 

ql/24b~ ~ ~ Pa(m,s,  nns) Pa(ma,,n2~) 
mns,m2s,m-2s=O nns,n2s,n-2s=O 

x Pa(m_2~, n_2,) qn,~+n2s+n-z~ 
X q (mns/2)(mns+m2s+m-2s 1)qE(m2,+m_2~)/2aEm,~+ (m2s+m-2s)/2-- 1 ]  (3.10) 
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where m 2 , + m _ 2 ,  and m , , + m _ 2 s  -~ (m2s+m-2s)/2 are even 
Pal(O, 0 ) =  1 by definition. The sums over n= are evaluated using 
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a n d  

qm(m + l )/2 
~ Pd(m,n)q~= (3.11) 

,,=o (q),~ 

Table I. The Terms through Order q8 in the Construction of b ~ from the Rules 
of Section 3 ~ 

Order rn,~l mt2~ mt-2s Pmi~'~ P~i~ {p,u, pc,, p-2~} (units of f /M) States ql/24b~ 

qO 0 0 0 - -  - -  {0, 0, 0} 1 1 

q2 0 1 1 - -  2n/M {0, 2, 2} 1 1 

q3 0 1 l - -  2n/M {0, 4, 2}, {0, 2, 4} 2 2 

q4 0 1 1 - -  2n/M {0, 6, 2}, {0, 4, 4}, {0, 2, 6} 3 
2 0 0 3n/M - -  {3 + 5, O, O} 1 4 

q5 0 1 1 - -  2rc/M {0, 8, 2}, {0, 6, 4}, {0, 4, 6}, 
{0, 2, S} 4 

2 0 0 3rc/M - -  {3+7,0 ,0} 1 5 

q6 0 1 1 - -  2rc/M {0, 10, 2}, {0, 8, 4}, {0, 6, 6}, 
{0, 4, 8}, {0, 2, 10} 5 

2 0 0 3n/M - -  {3 +9, O, 0}, {5+7,0,0} Z 
1 2 0 4rc/M 3zc/m {4, 3 + 5, 0 } 1 
1 0 2 4rc/M 3rc/M {4,0,3+5} 1 9 

qv 0 1 1 -- 2=/m {0, a2, 2}, {0, 10, 4}, {0, 8.6}, 
{0, 6, 8}, {0, 4, 10}, {0, 2, 12} 6 

2 0 0 3rc/M - -  {3 + 11, O, 0}, {5 +9, O, O} 2 
1 2 0 4rc/M 3~z/M {6, 3 + 5,0}, {4, 3 +7} 2 
1 0 2 4n/M 3=/M {6,0, 3 + 5}, {4, O, 3 + 7} 2 12 

qS 0 1 1 - -  2zc/M {0, 14, 2}, {0, 12, 4}, {0, 10, 6} 
{0, 8, 8}, {0, 6, 10}, {0, 4, 12} 
{o, 2, 14} 7 

2 0 0 3rc/M - -  {3 + 13, O, 0}, {5 + 11, O, 0}, 
{7+9,.0, O} 3 

1 2 0 4rc/M 3rc/M {8, 3 + 5, 0}, {6, 3 +7, 0}, 
{4 ,3+9 ,0} ,{4 ,5+7 ,0}  4 

1 0 2 4rt/M 3rc/M {8, O, 3 +5}, {6, O, 3 +7} 
{4, O, 3 +9}, {4, O, 5+7} 4 

0 2 2 - -  3rc/M { 0 , 3 + 5 , 3 + 5 }  1 19 

"The minimum momenta P~in = (rc/M)(m,,s + m2~ + m-2s + 1) and p,~Z~ = (n/M) x 

(m,,  + (m2s + m 2,)/2 + 1) are obtained from (3.15). The terms in ql/24b~ are obtained from 
(2.30a). Here mz~+m_2, and m , s + m _ 2 s + ( m 2 s + m 2 , ) / 2  are even. T h e  macroscopic 
momentum shift is AP ~ O. 
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where we use the standard notation 

(q)m ----- f l  (1 -- qJ) (3.12) 
j=l  

and (q)0 = 1 by definition. Thus we find that when mzs + m_2, is even and 
(3.9) holds 

qm.,(m~ + 1 )/2 qmzs(mz~ + 1)/2 qm-2s(m 2~ + 1)/2 

q 1/24b~ E E E 
mns=O m2s=O m _ 2 s = O  (q)rn,~ (q)mz~ (q)m-z~ 
• q (mns/2)(mns + m2s + m_2s -- 1 ) q [ (m2s + m_2s)/2 ] [mm + (m2s + m_ 2s)/2 - 1 ] 

_ 4mns + 4mnsm2s + 4mnsm-2s + 2m2sm-2s)/4 q ( 2 , n 2  + 3m 2 2s + 2 

=X X X 
mns=O m2s=O m _ 2 s = O  (q)m,~(q)m2~(q)m_2~ 

(3.13) 

This form for the branching function bo o is identical with the expression 
derived by Lepowsky and Primc in the context of characters of All). (15) 
Furthermore, the quadratic form in the exponent of (3.13) is obtained from 
the inverse Cartan matrix for the group A 3. 

We may now extend these considerations to the general case where 
both some m~ # 0 and some mt~ ~ 0. In this general case we note from the 
work of refs. 9 and 10 that the contributions to the energy from regions 
where (3.5a) holds and the region where (3.5b) holds are independent. 
Combining the above considerations, we have in general the expression for 
the low-lying energy levels in the M ~ oo limit: 

l r 

{rn~ (P~" m= ( P J ) t  = �9 r.= (3.14) Eex--Eos ~ e~ )+ ~ e~ 
= 2s, -- 2s, ns j 1 j = 1 

where we define P~'= and P~'~ to satisfy 

+ 2 + 1 t'J,- s (3.15a) 

and 

_ _  "l _~ ~l,  ns X (mlns+m12~+m I 2 s + l , . . ~ . j  
M 

rc _ 2 S + l  " ~ * J  , J - -  rn~ -- ~ 1jr,2s pr, -- 2s 
M 

(3.15b) 

(3.16a) 

~(rn~s+m~zs+m~_2s+ 1)~<P~ '"s (3.16b) 

where again the spacing between allowed values for pj, r is 2n/M, the Fermi 
exclusion rule (1.4) holds, and e~(P)= vP with v given by (2.13). 
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r = 1 ,  r __ r __0 and In Table  II we consider the cases m2s m 2 s - m n s -  
mr2~ = 1, m ~  = m ~  = 0 and c o m p u t e  the contr ibut ion made  to Z to order 
q31/4 of  the terms in (3.14) that involve  only  Pr F r o m  (2.17) we see that 

m ~  + ml_2~ is odd  (3.17) 

Table II. The Terms through Order  q31/4 in the  Construct ion of b ~ f rom 
the Rules of  Sect ion 3 ~ 

l ,~ _ {p.., e2~, p-Z~} (units of re/M) States ql/24b~ Order rn., m~ mi2.  Prom e+i~ s 

q3/4 0 0 1 - -  3rc/2M {0, O, 3/2} 1 1 

q7/4 0 0 1 - -  3rc/2M {0, O, 7/2} 1 1 

q11/4 0 0 1 - -  3rc/2M {0, O, 11/2} 1 
1 0 1 3 z / M  5rc/2M {3, 0, 5/2} 1 2 

q15/4 0 0 1 - -  3zc/2M {0, 0, 15/2} 1 
1 0 1 3~/M 5~/2M {3, o, 9/2}, {5, o, 5/2} 2 3 

q~9/4 0 0 1 - -  3~/2M {0, O, 19/2} 1 
1 0 1 37r/M 52/2M {3, O, 13/2}, {5, O, 9/2}, {7, O, 5/2} 3 
0 1 2 - -  5 z / M  {0,5/2,5/2+9/2} 1 5 

q23/4 0 0 1 - -  3rr/2M {0, O, 23/2} 1 
1 0 1 3~/M 5~r/2M {3, O, 17/2}, {5, O, 13/2} 

{7, O, 9/2}, {9, O, 5/2} 4 
0 1 2 - -  5~/2M {0 ,9 /2 ,5 /2+9 /2} , {0 ,5 /2 ,5 /2+13 /2}  2 7 

q27/4 0 0 1 - -  3n/2M {0, O, 27/2} 1 
l 0 1 3~/M 5~/2M {3, O, 21/2}, {5, O, 17/2}, {7, O, 13/2} 

{9, 0, 9/2}, {11, 0, 5/2} 5 
0 1 2 - -  5r(2M {0 ,13 /2 ,5 /2+9/2} , {0 ,9 /2 ,5 /2+13 /2}  

{0 ,5 /2 ,5 /2+17 /2} , {0 ,5 /2 ,9 /2+13 /2}  4 
2 0 1 4rc/M7rc/2M {4+6,0 ,7 /2}  1 
0 0 3 - -  5~/2M {0 ,0 ,5 /2+9/2+13/2}  1 12 

q3~/4 0 0 1 - -  3n/2M {0, 0, 31/2} 1 
1 0 1 3rc/M 5rt/2M {3, O, 25/2}, {5, O, 21/2}, {7, O, 17/2} 

{9,0, 13/2}, {11, O, 9/2}, {13,0,5/2} 6 
0 1 2 - -  5~/2M {0 ,5 /2 ,5 /2+21 /2} , {0 ,5 /2 ,9 /2+17 /2}  

{0, 9/2, 5/2+ 17/2}, {0, 9/2, 9/2+ 13/2} 
{0,13/2,5/2+13/2},{0,17/2,5/2+9/2} 6 

2 0 1 4~/MYlr /2M {4+8 ,0 ,7 /2} ,{4+6 ,0 ,11 /2}  2 
0 0 3 - -  5~/2M {0 ,0 ,5 /2+9/2+17/2}  1 16 

"The minimum momenta P~in = (rc/M)(m,,s + m2~ + m_2, + 1 ) and P+i~ = (n/M) x 
(m,~ + (mz~ + m_2,)/2 + 1) are obtained from (3.15). The terms in qm4b~ are obtained from 
(2.30b). Here rn2s+m_2~ is odd and mn,<m_z, .  The macroscopic momentum shift is 
A P = n .  
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Table III. 

Kedem and McCoy 

The Terms through Order qS in the Construction of b~ from the 
Rules of Section 3 a 

Order mt,,s 

ql 1 

q2 1 

q3 1 

0 
0 

q4 1 

0 
0 

qS 1 
0 
0 
1 

q6 1 
0 
0 
1 

q7 1 
0 

0 

1 

qS 1 
0 

0 

1 

l na m2~ m~2~ Pmi, P+i~ {p% p2s, p-2s} (units o f n / M )  States qa/~b~ 

0 0 2 n / M  - -  {2, O, O} 1 1 

0 0 2 n / M  - -  {4, O, O} i 1 

0 0 2 n / M  - -  {6, O, O} 1 
2 0 - -  2 = / M  {0 ,2+4 ,0}  1 
0 2 - -  27tiM {0 ,0 ,2+4}  1 3 

0 0 2 h i M  - -  { 8, O, 0 } 1 
2 0 - -  2 n / M  {0 ,2+6 ,0}  1 
0 2 - -  2 n / m  {0 ,0 ,2+6}  1 3 

0 0 2 n / M  - -  { 10, O, 0 } 1 
2 0 - -  2 n / M  {0, 2 +  8, 0}, {0 ,4+6 ,0}  2 
0 2 - -  2 n / M  {0, 0, 2+8} ,  {0 ,0 ,4+6}  2 
1 1 4 n / M  3rc/M {4, 3, 3} 1 6 

0 0 2 h i M  - -  {12, O, O} 1 
2 0 - -  2 n / M  {0, 2 +  10,0}, {0 ,4+8 ,0}  2 
0 2 - -  2 n / M  {0, O, 2 +  10}, {0 ,0 ,4+8}  2 
1 1 4 n / M  3 n / M  {4, 5, 3}, {4, 3, 5}, {6, 3, 3} 3 8 

0 0 2 n / M  - -  {14, 0, 0} 1 
2 0 - -  2 n / M  { 0, 2 + 12, 0}, {0, 4 + 10, 0}, 

{0 ,6+8 ,0}  3 
0 2 - -  2 n / M  { 0, O, 2 + 12}, {0, O, 4 + 10}, 

{0, 0,.6 + 8} 3 
1 1 47z/M 3 n / M  {4, 7, 3}, {4, 5, 5}, {4, 3, 7} 

{6, 3, 5}, {6, 5, 3}, {8, 3, 3} 6 13 

0 0 2 n / M  - -  {16,0, O} 1 
2 0 - -  2 n / M  {0, 2 + 14, 0}, {0, 4 +  12, 0}, 

{0 ,6+10 ,0}  3 
0 2 - -  2 n / M  {0,0, 2 +  14}, {0, O, 4 +  12}, 

{o, o, 6 + lO} 3 
1 1 4 n / M  3 a I M  {4, 9, 3}, {4, 7, 5}, {4, 5, 7} 

{4, 3,9}, {6, 7, 3}, {6, 5, 5} 
{6, 3, 7}, {8, 5, 3}, {8, 3, 5} 
{10, 3, 3} 10 17 

~ P ~ i .  - ( g / M )  x The minimum momenta Pmin = (r~/M)(m,,, + m2s + m_2s + 1) and + - 
(ra,,s + (m2~ + m-2s ) /2  + 1) are obtained from (3.15). The terms in qX/24b~ are obtained from 
(2.30c). Here rn2, + m_z, is even and m,,~ + m_2,  + (rnz~ + m_zO/2  is odd. The macroscopic 
momentum shift is A P  = O. 
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Further, the interchange mZ2~--~m~zs leaves (3.14) invariant and from 
(2.20) gives C~-~ - C .  Thus we need only consider m~, < mt_2~ and find that 
this construction agrees with qi/24b~ of (2.30b). 

In Table III we consider the case m~,~ = 1, m~s = m~2s = 0 and compute 
to order q8 the contribution made to Z in the channel C/Crs = 1 of the 
terms in (3.14) that involve only ptj:~,. From (2.7) and (2.20) we find that 

l + m  t 2~+(m12~+m12~)/2 odd (3.18) ml2s + mt_2s even and m,~ _ 

We find that this agrees with q1/24b~ of (2.30c). 
These above two equalities have been verified to order q2OO. 
From these constructions we can find expressions for b ~ and b ~ as we 

did above for b ~ We thus find that ql/Z4b~ is given by (3.13) for ~ =0,  2, 4, 
where 

fo rb  ~ m2s+m_2~iseven and 

for b ~ m2~+m_2siS odd and 

for b ~ m2~+m_2~iseven and 

m2, + m--2s is 
runs q- m - zs + even 

2 

m2s < m_2s (3.19) 

m2s + m _ 2s is m,,s + m_2s + odd 
2 

This form for the branching functions agrees with the forms obtained in 
ref. 15. 

We may now finally construct the complete Q = 0 contribution to Z 
by using (3.14)-(3.16) in (3.1) and summing over all m~, and m/~ subject 
only to the restriction (2.17) written in the form 

m~s+m~_2s+mZ2s+mZ_2s even (3.20) 

[We note that there is no restriction corresponding to (2.20), because both 
channels C = _+ 1 are considered in the sum.] It is easy then to see that the 
result consist of all the terms in (1.10) which involve b ~ b~ and b ~ where 
we note (1) that the factor of 4 in front of b~ b~ arises because of 
the symmetry under rn~2s~-*.m~2s and m~s *--~mt-2s, and (2) terms like 
b~ b~ and b~176 are excluded by (3.20). 

4. B R A N C H I N G  F U N C T I O N S  FOR Q = I  

The channel Q =-t-1 is more complicated than the channel Q = 0  
because, as seen in Section 2, the spectrum of excitations has four separate 
contributions. In ref. 17 these contributions are distinguished by the 
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number  m + + of ( + + ) pairs of roots and the number m_  + of ( - + ) pairs 
of roots, where the sum rule is 

m2s+2m,,~+3m_z,,+m + + m r + = M - 1  (4.1) 

We found that three cases occurred, 

rn_+ - m + +  = 1 , 0 ,  - 1  (4.2) 

and when m_ + = m+ + the spectrum is twofold degenerate. We will thus 
extend the considerations of Section 3 by considering these three cases 
separately. 

4.1. m _ + - m + + = - I  

In this sector the total momentum is given by (2.15) with p0 = P6s + n 
and there are M - -  1 single-particle states with mn~ = 1. 

We find for all three cases (4.2) from the previous study of complete- 
ness (17) that 

p2, takes M -  1 + m + +  +m_zs values (4.3a) 

p~Zs takes r n _ 2 s + m + + - I  values (4.3b) 

and 

P 7  takes mn~+2m+++2m_2s values (4.3c) 

In this present case we use m + = m+ + - 1  in (4.1) to write 

2m++ =M-m2~-2m,,s- 3m_2~ (4.4) 

and thus (4.3) reduces to 

__3M _ m 2 s  + m _  2s 
1 - rn,, values for p2~ (4.5a) 

2 2 

and 

M /T/2s "~- m_ 2s 
1 - m,,  values forP7  2~ (4.5b) 

2 2 

M -  m n s  - -  m 2 s  - -  m _  2~ values for pns J (4.5c) 

where m2s + m_2s is even. This will be the case if P~ satisfies 

m2s+m2s) ( ) 
- -  ~< Pj ~< 37r - M mns -t 2 + 2 (4.6a) M mns-r 2 + 2  2s m2s+m-2s 

) M m,~+ 2 + 2  ~< ~< { m2~ 2 + 2  (4.6b) 
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and 

7T 7~ 

~(m,,s+rn2~+m_2s+ l)<~P~~<~27t ~(m,,~+m2s+rn_2s+ l) (4.6c) 

where the spacing between allowed values of P~ is 2g/M and (1.4) holds. 
It may be verified that this choice of ,o7 exactly reproduces the momenta 
of Table 6 of ref. 17 for each allowed set of rn2~, m_2,, and mn~. Following 
the procedure of Section 3, we compute in Table IV the contribution these 
states will make to the partition function, where we use the linearized 
energies (3.6) and keep all P~ near zero. 

4.2. m - m  = 1  - - 4 -  + +  

In this case pO= PGs and there are M - 3  single-particle states with 
m~s= 1. Furthermore, we find from (4.1) that 

2m+ + = M -  2 - m2, - 2 m . , -  3m_2, (4.7) 

and thus there are 

3M m2~ + m_2, values for P?~ (4.8a) - ~ - -  2 - m , ,  2 J 

M 2_mns mz~+m 2~ valuesforPf2S (4.8b) 
2 2 

and 

M - 2 - m , , s - m 2 s - m  2s values for Pes (4.8c) - -  j 

where again m2s + m_2s is even. This will be satisfied P~ satisfies 

rt ( mzs+m_2s ) ~ < 3 ~ z  M (  m2~+ ) mn,+ 2 +3 ~<p2 - m,~-~ 2m-2~+ 3 (4.9a) 

( ) M (  m2,+ ) ! m2, + m_2s 2s ~< mns 2 M m,,s-~ 2 +3 ~<Pf = -  -t m-2~+3 (4.9b) 

Mrc (m"~+m2s+m-2*+ 3)<~P~S<~2rc-; (mn~+m2s+m-2~+ 3) (4.9c) 

where the spacing between allowed values of P~ is 2~r/M and (1.4) holds. 
Again it may be verified that this choice of P~ exactly reproduces the 
momenta of Table 6 of ref. 17 for the allowed values of m2, m_2s, and runs. 
In Table V we compute the contribution these states make to the partition 
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Table 

Order m~.~ 

Kedem and McCoy 

IV, The Terms through Order qS in the Sector m + - m + + = - I  
Constructed from the Rules of Section 4.1a 

, ,  m 

m~. rnl2, P ~  P+i~ {p.% e2,, p-2~} (units of n/M) States Total 

q0 0 0 0 - -  - -  {0, 0, 0} 1 1 

ql 1 0 0 2rc/M - -  {2,0,0} 1 1 

q~ 1 0 0 2zc / M - -  {4, 0, 0} 1 1 

q3 1 0 0 2 n / M  - -  {6, 0, 0} 1 
0 1 1 - -  31t/M {0, 3, 3} 1 2 

q4 1 0 0 2rc/M - -  {8,0, 0} 1 
0 1 1 - -  3 h I M  {0,3,5},{0,5,3} 2 
2 0 0 3 n / M  - -  {3+5,0,0} 1 
0 2 0 - -  3 n / M  {0,3+5,0} 1 
0 0 2 - -  3 ~ / M  {0,0,3+5} 1 6 

q5 1 0 0 2r~/M - -  { 10, 0, 0} 1 
0 1 t - -  3rc/M {0, 3, 7}, {0, 5, 5}, {0, 7, 3} 3 
2 0 0 3rc/M - -  {3+7,0,0} 1 
0 2 0 - -  3r~/M {0,3+7,0} 1 
0 0 2 - -  3r~/M {0,0,3+7} 1 7 

q6 1 0 0 2 g / M  - -  {12, O, O} 1 
0 1 1 - -  3rt /M {0, 3, 9}, {0, 5. 7} 

{0, 7, 5}, {0,9,3} 4 
2 0 0 37t/M - -  {3 +9, 0,0}, {5 +7,0,  O} 2 
0 2 0 - -  3rc/M {0~ 3 +9, 0}, {0, 5 +7,0} 2 
0 0 2 - -  3 n / M  {0, O, 3 +7}, {0, O, 5+  7} 2 
1 1 1 4rq~/M 47t/M {4, 4, 4} 1 12 

q7 1 0 0 2r~/M - -  {14,0,0} 1 
0 1 1 - -  3rc/M {0,3, 11}, {0, 5, 9}, {0, 7, 7}, 

{0, 9, 5}, {0, 11, 3} 5 
2 0 0 3 ~ / M  - -  {3+11 ,0 ,0} ,{5+9 ,0 ,0}  2 
0 2 0 - -  3rc/M {0, 3+ 11,0}, {0, 5+9,0}  2 
0 0 2 - -  3zc/M {0,0~ 3+ 11}, {0,0, 5+9} 2 
1 1 1 4 n / M  4rc/M {4,4,6},{4,6,4},{6,4,4} 3 
1 2 0 4zc/M 4 ~ / M  {4,4+6,0} 1 
1 0 2 4rc/M 4rc/M {4,0,4+6} 1 17 

qS 1 0 0 2 n / M  - -  {16, O, O} 1 
0 1 1 - -  37z/M {0, 3, 13}, {0, 5, 11}, {0, 7, 9}, 

{0, 9, 7}, {0, 11, 5}, {0, 13, 3} 6 
2 0 0 3 z / M  - -  {3+13,0 ,0} ,{5+11,0 ,0} ,{7+9,0 ,0}  3 
0 2 0 - -  3 ~ / M  {0,3+13,0} ,{0 ,5+11,0} ,{0 ,7+9,0}  3 
0 0 2 - -  3 ~ / M  {0,0 ,3+13},{0 ,0 ,5+11},{0 ,0 ,7+9} 3 
1 1 1 4~/M 4~/M {4, 4, 8}, {4, 8,4}, {8,4, 4}, 

{4,6,6},{6,4,6},{6,6,4} 6 
1 2 0 4 ~ / M  4zc/M {4 ,4+8 ,0} ,{6 ,4+6 ,0}  2 
1 0 2 4 n / M  4r~/M {4 ,0 ,4+8} ,{6 ,0 ,4+6}  2 26 

aThe minimum momenta P~in = (zc/M)(m,,, + m2s + rn_2, + 1) and P~i2~ .-~ ( n / M )  x 
(rn,, s + (m2~ + m_zs) /2  + 2) are obtained from (4.6). Here rn2, + m__2s is even and the macro- 
scopic momentum shift is A P  = 7z. 
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function where the linearized energies (3.6) are used and all momen ta  are 
kept near zero. 

4.3. m - + = m + +  

In  this case p O = p G s ,  there are 3 M - 4  single-particles states with 
rn2~ = 1 and M - 4  single-particle states with m _ 2 s  = 1. Fur thermore,  

2m+ + = M -  1 - m 2 ,  - 2 r e . s -  3m_2s (4,10) 

Table V. The Terms through Order q8 in the Sector m _ + - m + +  =1 
Constructed from the Rules of Section 4.2" 

t .s {p , . ,  p2s, p-Z~} (units of n/M) States Total Order m.~ m~ mt2s Pmin P,~i 2s 

qO 0 0 

q2 1 0 

q3 1 0 

q4 1 0 
0 1 

q5 1 0 
0 1 
0 2 
0 0 

q6 1 0 
0 1 
0 2 
0 0 
2 0 

q7 1 0 
0 1 

0 2 
0 0 
2 0 

q8 1 0 
0 1 

0 2 
0 0 
2 0 
1 1 

IIII 

"The minimum 

o - - -  {o,o,o} t 1 

0 4rc/M - -  {4, O, O} 1 1 

0 4:r - -  { 6, O, 0 } 1 l 

0 4 u / M  - -  {8, O, O} 1 
1 - -  4 n / M  {0. 4, 4} 1 2 

0 4zc/M - -  {10, O, O} 1 
1 - -  4rc/M {0, 4, 6}, {0, 6, 4} 2 
0 - -  4r~/M {0, 4 + 6, O} 1 
2 - -  4 n / M  {0,0,4+6} 1 5 

0 4 n / M  - -  {12,0, O} 1 
1 - -  47c/M {0, 4, 8}, {0, 6, 6}, {0, 8, 4} 3 
0 - -  4rc/M {0, 4 + 8, 0 } 1 
2 - -  4 n / M  {0,0 ,4+8} 1 
0 5rr /M - -  {5 + 7, 0, 0} 1 7 

0 4 n / M  - -  { 14, O, 0 } 1 

1 - -  4 z c / M  {0, 4, 10}, {0, 6, 8}, 
{0, 8, 6}, {0, 10, 4} 4 

0 - -  4 h i M  {0, 4+  10, 0}, {0, 6+ 8, 0}, 2 
2 - -  4rc/M {0, O, 4+  10}, {0,0 ,6+8} 2 
0 5 u / M  - -  {5+9,0,0} 1 10 

0 4 u / i  - -  {16,0,0} 1 
1 - -  4 r ~ / M  {0, 4, 12}, {0, 6, 10}, {0, 8, 8}, 

{0, 10, 6}, {0, 12, 4} 5 
0 - -  4 n / M  {0,4+ 12, 0}, {0, 6+  10, 0}, 2 
2 - -  4rc/M {0,0, 4 +  12}, {0, O, 6+  10} 2 
0 5 ~ / M  - -  {5 + 1l, O, 0}, {7+9, O, O} 2 
1 6 n / M  57rIM {6, 5, 5} 1 13 

= ( 7 ~ / M )  x 

the macro* 
momenta P~n = (zc/M)(m.s  + m2s + m_2 ,  + 3) and P+i~ 

(m,,.~ + (mz~ + re_z,)~2 + 3) are obtained from (4.9). Here m2. + m_2s is even and 
scopic momentum shift is A P  = O. 
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where now m2~ + m 2, is odd. In this case there is a double degeneracy and 
we find from ref. 17 that there are 

and 

(3.3.3_M m2,+ rn 2,+ 1) 
2x - 1 - r n , ,  2 

2x(M- l-m,, -m2s +2-2~ + l ) 

values for p2, (4.11a) 

values for pj-2s (4.11b) 

2 x (M - 1 - m,, - rn2, - m _ 2s) values for P]" (4.11 c) 

Now in order to get a formula for the momentum which respects 
(4.11) we must consider two subcases. Either P~. satisfy 

f m2s + "~ <~pj2s ~ 31t_Mkmns+ +m-2s 1 2  +3 ) (4.12a) 

~ m,, 2 +1 

n ( m2~+m 2~+1 ) 
~ PJ 2s ~< rC-M re"s+ 2 +3 (4.12b) 

7r, ~(mn~+m2,+m 2s+l) 

~P]S <~2n-M(m,,,+mz~+m_2s+ 3) (4.12c) 

or P7 satisfy 

n ( + m 2 ~ + m _ 2 s + l + 3  ) 
- 3 n + ~  m~, 2 

n ( mz,+rn_2~+l ) 
~<p2~<~ - ~ r  m,~+ 2 + 1 (4.13a) 

M( rn2"+m-2*+l ) 
- - X +  mns+ 2 +3 

rn2s+ m_2,+ 1 ) 
2 t- 1 (4.13b) 
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-2~+ M(mns+m2~+m 2s+3) 

ns  Tg <~Pj <~ ----~(rn~+m2s+m_2+ 1) (4.13c) 

However, now instead of the total momentum P being given in terms 
of P~' by (2.15), we must introduce a shift of order 1/M [which is 

TableVI .  The Terms through Order q8 in the Sector m _ + = m + +  wi th  the 
Macroscopic Momentum A P = 0  Constructed from theRules of Section 4.3 a 

Order ml~s m~ mt2~ P~in P+i~' {p.~, e2., p-2s} (units of~z/M) Shift States Total 

q' 0 1 0 - -  2n / M {0, 2, O} 0 1 2 

q2 0 1 0 - -  2n /M {0, 4, O} 0 1 2 

q3 0 1 0 - -  2~ /M {0, 6, O} 0 1 
1 1 0 3n /M 3n /M {3, 3,0} 0 1 4 

q4 0 1 0 - -  2n /M {0, 8, O} 0 1 
1 1 0 3n /M 3~/M {3, 5,0}, {5, 3,0} 0 2 6 

q5 0 1 0 - -  2n /M {0, 10, 0} 0 1 
1 1 0 3r~/M 3rc/M {3,7,0},{5,5,0},{7,3,0} 0 3 8 

q6 0 1 0 - -  2rE/m {0, 12, 0} 0 1 
1 1 0 3~z/M 3zc/M {3, 9,0}, {5,7,0} 

{7, 5, 0}, {9, 3, 0} 0 4 
0 2 1 - -  3n / M {0, 3 + 5, 3 } n / M  1 12 

q7 0 1 0 - -  2~ /M {0, 14, 0} 0 1 
1 1 0 3rclM 3n /M {3, 11,0}, {5,9,0} 

{7, 7,0}, {9, 5, 0}, {11, 3,0} 0 5 
0 2 1 - -  3rc/M {0, 3 +7, 3}, {0, 3+5,  5} rc/M 2 
2 1 0 4n / M 4rc/M {4+6,4.0} 0 1 18 

q8 0 1 0 - -  2n / M {0, 16, 0} 0 1 
1 1 0 3zc/M 3n / M {3, 13,0}, {5, 11,0}, {7, 9,0} 

{9, 7,0},.{11, 5,0}, {13, 3,0} 0 6 
0 2 1 - -  3~r/M {0, 3+9,  3}, {0, 5+7,  3} 

{0, 3+7,  5}, {0, 3+5,  7} ~ /M 4 
2 1 0 4 n / M  4rc/M {4+8 ,4 ,0} ,{4+6 ,6 ,0}  0 2 
0 3 0 - -  3n /M {0, 3 + S + 7, O} rc/M 1 28 

"The minimum momenta P~i. = (n/M)(m.~ + m2s q- m_2s .-t- 1) and P+i;~ = ( n / M )  • 
(m.s+ (m2~ +m_z~ + 1)/2 + 1) are obtained from (4.12). Here m2~+m_z,  is odd and only 
m2s > m-2. are explicitly shown. 

822/71/5-6-4 
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permissible because (2.15) is only derived to order one] and write that 
when (4.12) holds 

m~ r e (  m2~+m 2"--1)  (4.14a) 
e = e ~  y, 2 

c~ = 2 s , - - 2 s ,  n s  j =  1 

and when (4.13) holds 

m ~  7z (m2s+m_2~- 1) 
2 Z 2 

= 2 s ,  --2s, ns j =  1 

(4.14b) 

It can be verified that the momenta computed from these rules agree with 
the momenta of Table 6 of ref. 17 for the allowed values of m2s, m_zs, 
and mns. 

Corresponding to this momentum shift there is an energy shift as well. 
Thus in Table VI we compute the contribution to the partition function of 
those states obtained from (4.12) with Py near zero using the linearized 
energies (3.6) and subtracting the shift (g/M)((mzs + m _ z s -  1)/2). We note 
that the macroscopic momenta of these states are near Pos- In Table VII 
we compute the contribution to the partition function from those states 
obtained from (4.13) with P~s near -3re, pf2s near -re,  and p~.s near -2re, 
where we add a shift (~/M)((m2s + m 2s-  1)/2) to the energy. The macro- 
scopic momentum of these states in Pas  + r~. In both cases, due to the 
symmetry under 2s ~ -2s ,  only the states with mzs < m 2s are shown. 

4.4. Branching Functions 

We may now obtain the formulas for the two branching functions of 
Q = 1, namely b ~ and b 2, by combining the results of the three preceding 
subsections with the same macroscopic momentum. 

Consider first the case where the macroscopic momentum is PGs. 
This is obtained from the m _ + - m + +  = 1 states of Table V and the 
m_ + = m+ + states of Table VI. In Table VIII compute the sum of these 
two contributions and see that it is identical with the corresponding terms 
in q-1/3q1/Z4b~ of (2.30d). 

The other case has the macroscopic momentum of P~s + zc. This is 
obtained from the m _ + - m + +  = - 1  states of Table IV and the 
m + = m + + states of Table VII. In Table IX we compute the sum of these 
two contributions and see that it is identical with the corresponding terms 
in q-m2qm4b2 of (2.30e). 

As in Q = 0, these identities have been verified to order q2OO. 
We may now use the above construction to obtain formulas for the 

branching functions bo 2 and b22 by following exactly the same procedure 
used in Section 3. This we find 
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q -  1/3ql/24b~ 

= ~ ~ ~ qm,,s(mns+ l,/2 qmz~(m2s+ l)/2 qm-2s(m-zs+ l)/2 

. . . .  = 0  m2s=O m - 2 s = O  (q)-~.~ (q)~2, (q)m 2, 
m2s § m -  2s even 

q(mns/2 )(mns + m2s + m 2s + 1) q (  (mzs + m 2s)/2 )(mns + (mzs + m _ z s ) / 2 )  + 1) X 

qm,,Am.. + 1)/2 qm2~(mz~ + 1)/2 qm 2s(m_2s + 1)/2 

+ ~ ~ ~ (q)m~s (q)m2, (q)m-z~ mns=O m2s=O m - 2 s  = 0 
m2s + m -  2s o d d  

X q (mns/2)(mns + m2s + m-2s  -- 1 ) q ((mz~ + m_2s)/2)(mns + (m2s + m_2s)/2) q - 1/4 

mns=O m 2 s = O  m - 2 s  = 0 
m2s + m-2s  even 

( 4m~s + 3m~s + 3m2 2s + 4mnsm2s + 4mnsm 2s + 2m2sm- 2s + 4mns + 4m2s + 4m_2s  -- 1 )/4 q • 
(q)m.,(q)m2~(q)m-2s 

mns=O m2s=O m - 2 s  = 0 
m2s + rn_2s odd  

q(4m2s + 3m 2 + 3m22s + 4 . . . .  2s + 4 . . . . .  2s + 2m2s m 2s + 2m2s + 2m2 + m-2s)/4 

X 

(q)m.s(q)m2s(q)m-2s 
and  

q -  1 / 1 2 ~ 1 / 2 4 1 ~ 2  
~'/ ~ 2  

mns = 0 m2s = 0 m _  2s ~ 0 
m2s + m_2s even 

( 4 . 1 5 a )  

qmn~(mns + t)/2 qm2~(mz~ + 1)/2 qm- 2~(m_ ~ + 1)/2 

(q)mns (q)~2s (q)m-2~ 

x q (mns/2)(mns + m2s + m _  2s + 1 ) q ((m2s + m 2s)/2)(mns + (m2s + m_2s)/2) 

+ ~ ,  ~ ~ q m n s ( m n , + l ) / 2 q m 2 s ( m 2 , + l ) / 2 q m - Z ~ ( m  2s+1)/2 

mns=O m 2 s = O  m ~ = 0  (q)m., (q)m2~ (q)m-2, 
m2s + m_2s  odd  

•  1/4 

mns=O m 2 s = O  m 2 s = O  
m2s + m_2s even 

2 2 2 
~t( 4m ns + 3m2s + 3m_2s + 4mnsm2s + 4mnsm-2s + 2m2sm 2s + 2m2s + 2m 2s)/4 

• 
(q)m~ Z~ 

mns=O m 2 s = O  m - 2 s =  0 
m2s + m _  2s o d d  

(4,,,2os + 3m~s + 3m2 2s + 4 . . . .  2, + 4 . . . .  2s + 2m2sm 2, + 4m~s + 4m2s + 4,,,_ 2s + 1)/4 q 
X 

(q)m,s(q)mz~(q)m_2, ( 4 . 1 5 b )  
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Table VII. The Terms through Order qS in the Sector m_ + = m+ + wi th  the 
Macroscopic M o m e n t u m  A P = w  Constructed from the Rules of Section 4.3 ~ 

' mt2~ mt-2~ Pmin P+i~ {p,~, p2,, p-2~} (units of re/M) Shift States Total Order m ns ns 

q2 0 1 0 - -  4n / M {0, 4, O} 0 1 2 

q3 0 1 0 - -  47t/M {0, 6, O} 0 1 2 

q4 0 1 0 - -  4r~/M {0, 8, O} 0 1 2 

q5 0 1 0 - -  4Tt/M {0, 10, O} 0 1 
1 1 0 5rc/m 5n/m {5, 5,0} 0 1 4 

q6 0 1 0 - -  47z/M {0, 12, 0} 0 1 
1 1 0 5rc/M 5rc/M {5, 7,0}, {7, 5,0} 0 2 6 

q7 0 1 0 - -  4~z/M {0, 14, O} 0 1 
1 1 0 51t/M 5~z/M {5 ,9 ,0} ,{7 ,7 ,0} ,{9 ,5 ,0}  0 3 8 

q8 0 1 0 - -  4z~/M {0, 16, O} 0 1 
1 1 0 5rc/M 5n /M {5, 11,0}, {7, 9,0} 

{9, 7,0}, {11, 5,0} 0 4 
0 2 1 - -  5rc/M {0, 5 + 7, 5 } - rc/M 1 12 

aThe minimum momenta P~in = (~t/M)(m,,s + m2~ + rn_2~ + 3) and P+i2~ = (n/M) x 
(mn~ + (m2~ + m _z, + 1 )/2 + 3) are obtained from (4.13). Here m2s + m 2s is odd and only 
m2, > m_2~ are explicitly shown. 

Table VIII.  The Terms through Order qS in the Sum of m _ + _ m + + _ _ l  
and the AP----0 Term of m _ +  = m + +  a. 

Order m _ + - m + + = l  m _ + - m + + = 0  Total q-1/3ql/2462 

qO 1 0 1 1 
ql 0 2 2 2 
q2 1 2 3 3 
q3 1 4 5 5 
q4 2 6 8 8 
q5 5 8 13 13 
q6 7 12 19 19 
q7 10 18 28 28 
q8 13 28 41 41 

These are compared with the terms in q-l/aql/24b2 of (2.30d). 
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Table IX. The Terms t h r o u g h  Order  qS in the  Sum o f m _ + - m + + = - I  
= m  and the  A P = r r  Term of  m _ +  ++ . 
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Order m + - m + + = l  m + - m + + = 0  Total q t/12ql/2462 

q0 1 0 1 l 
ql 1 0 1 1 
qZ 1 2 3 3 
q3 2 2 4 4 
q4 6 2 8 8 
q5 7 4 11 1l 
q6 12 6 18 18 
q7 17 8 25 25 
q8 26 12 38 38 

These are compared with the terms in q 1/12ql/24b2 of (2.30e). 

Unl ike  the case of Q = 0, these forms for the b ranch ing  funct ions are no t  
of  the form of ref. 15. 

4.5. Part i t ion Function 

Fina l ly  we need to compu te  the comple te  pa r t i t ion  in the Q = 1 
channel .  N o w  in each of  the four  cases cons idered  above  there are bo th  left 

r t Deno te  the four  sums ob ta ined  above  for and  r ight  exci ta t ions  m~ and  m~. 
a l l m ; = 0 b y S - f o r m _ + - m + + = - l ,  b y S  + f o r m  + - m + + = l ,  b y S  o 
for m _  + = m + + with AP = 0, and  by  S ~ for m _  + = m + + with AP = re, To 

r i bo th  nonzero ,  we follow the cons ider  the general  case with bo th  m~ and  m~ 
p rocedure  of  Sect ion 3 and  cons ider  m o m e n t u m  rest r ic t ions  for the t ight  
and  left movers  separately.  

,Consider first m _  + - m + + = - 1. Then,  because  of the res t r ic t ion tha t  

mzs+rn_2s=m~2s+rn+zs+mZ2~+ml_2~ must  be even, we see tha t  
r r l m2,-t-m_2s and  m2~+mt_2s mus t  be even or  odd  together.  If  bo th  terms 

are even, the con t r ibu t ion  made  to the pa r t i t i on  funct ion is S-(q)S-((t) 
and  if bo th  terms are odd  and  the m o m e n t a  are shifted proper ly ,  the 
con t r i bu t ion  is S'~(q)S'~(~I). 

The con t r i bu t ion  f rom m + - m + +  = 1 is similar.  Aga in  m~s+m~_2, 
/ l and  mzs-k-m_2~ must  be even o r  odd  together.  The  even terms con t r ibu te  

S+(q) S+(gl) and  the o d d  terms con t r ibu te  S~ S~ 
Fina l ly  there are the terms f rom m + +  = m  +. Here  m~+m~_2~+ 

mZ2~+mt2~ is odd,  thus m~s+m~2~ is even (odd)  and  m~s+mZ2s is odd  
(even). The  ends where m~'J+ m2t2, are  odd  p roduc e  the terms S o and S ~ 
and  if the m o m e n t u m  shift is p rope r ly  accoun ted  for, the ends with 
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r,l + mr, l m2s -2, even produce S + and S- .  Thus, the sector m + + = m _ +  
produces cross terms like S~ and S~(q)S-(gl), and hence the 
desired form bZ(q)b~(gl)+ bZ(q)b~(gl)in (1.10)is obtained. 

5. D I S C U S S I O N  

Many mathematical points of the foregoing computations remain to 
be clarified, such as: (1) a direct proof of the equivalence of the forms 
(3.13), (3.19), and (4.16) with (2.25), (2.27), and the forms of Appendix B; 
(2) the obtaining of our results directly from the functional equa- 
tions(16.21 23) without recourse to the study of the completeness rules. (17) 
However, the major feature of the results of Sections 3 and 4 is that they 
directly relate the concept of branching function with that of quasiparticle. 
This provides insight into the physics of the model, which we will discuss 
here in detail. 

5.1. In f ra red  M o m e n t u m  Rest r ic t ions  

All the eigenvalue spectra computed here have, up to a possible 
constant, the additive quasiparticle form (1.2) of 

E e x - E G s  = ~, e~(Pj) (5.1) 
ct, r u l e s  

where two important features of the rules govern the combination of 
energy levels. The first is the Fermi exclusion property: 

P ~ : ~ U  for i # j  (5.2) 

This rule in conjunction with the quasiparticle form (5.1) is often used to 
say that the quasiparticles are fermions. 

If the momenta P~ were such that 

2nj (5.3) 

with j an integer (or possibly half-integer), these quasiparticle energies 
would indeed be identical with those of a genuine free Fermi gas. However, 
the momentum set out of which the Pj are chosen is not (5.3). Instead, the 
momenta are subject to the restrictions (3.16), (4.6), (4.13), and (4.14). 
These all share the feature that there is a depletion of the number of 
allowed momenta near the values of P where e~,(P) = 0, which depends on 
the number of quasiparticles in the state. This is an intrinsic many-body 
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effect which cannot be modeled by an effective change in some one- or 
two-body property. 

More generally we may consider n species of fermionic quasipartMes 
which have a spacing of allowed values of 2~/M and a set of infrared 
momentum restrictions 

M(~ N=,~me+ t)<~P~. (5.4) 

This set of infrared quasiparticle momentum restrictions gives results which 
agree with the group-theoretic construction of ref. 15 for the branching 
functions of the Zn+1 parafermionic conformal field theories, (26'27) where 
(N~,~+6~,~)/2 is the inverse Caftan matrix of An. Moreover, it can be 
shown (34) that a similar construction with N~,p given by the inverse Caftan 
matrix of the Dn and En simply laced Lie algebras gives branching 
functions of the corresponding conformal field theories. Thus the infrared 
momentum restrictions (5.4) are a general mechanism that can lead to 
central charges being different from integer or half-integer. 

The phenomena characterized by the momentum restrictions (5.4) 
have, at least on the face of it, nothing to do with integrability, Virasoro 
algebra, modular invariance, or any other symmetry algebra. In this respect 
the restrictions (5.4) share the feature of generality with Haldane's (35) 
definition of fractional statistics. However, the definition of ref. 35 differs 
from the infrared momentum restrictions (5.4) by relying on the finiteness 
of the Hilbert space. This can only be achieved by imposing an ultraviolet 
as well as an infrared cutoff on the problem, whereas, by the very name, 
infrared momentum restrictions exist without an ultraviolet cutoff. The 
essential feature of ref. 35, however, is the abandoning of a second- 
quantized description of the excitations in the system and this is certainly 
a key property of the effects described above. 

5.2. Specific Heat 

One of the powerful results of conformal field theory is the predic- 
tion (36'37) that the specific heat C for a system with periodic boundary 
conditions is given in terms of the central charge and the velocity of sound 
as T,,~ 0 as 

~k~e 
C~-57 T (5.5) 

The original derivations are based on conformal invariance. We discuss 
here the relation of (5.5) with the momentum restrictions (5.4). 
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By definition the bulk free energy per site is obtained from the 
partition function 

Z = Tr e -wk"~ (5.6) 

as 

1 
f = - k B T  lim - - - l n Z  (5.7) 

M - ~  oo m 

where 

T > 0  is fixed and M ~ o o  (5.8) 

Then the specific heat is 

c= - T  ay aT 2 (5.9) 

To obtain the leading behavior as T ~  0 of the specific heat it is 
sufficient to restrict attention to the low-lying (order-one or smaller) excita- 
tions of H over the ground state. These obey the quasiparticle form (5.1). 
Hence specific heats are commonly evaluated with formulas involving 
single-particle levels e(P). 

This argument, however, is not complete, as is apparent in the 
observation that any energy level with e(P) > 0 as M ~ oo will contribute 
only a term exponentially small in T to the specific heat. Thus the order- 
one excitations do not contribute to the linear term (5.5). Instead it is the 
levels that have the property that limM~ 0o e(P) = 0 which contribute to the 
leading behavior. 

The partition function in the conformal field theory of one-dimensional 
quantum spin chains is computed in the limit 

M ~  o% T--*0 with MTfixed (5.10) 

This is not the same as the limit (5.8) which defnes the specific heat. 
However, if no additional length scale appears in the system, it is expected 
that the behavior of the specific heat computed using the prescription 
(5.10) where q=e -2~v/M~r is fixed will agree when q ~ 1 with the T--*0 
behavior computed using the prescription (5.8) for systems obeying the 
infrared momentum restrictions (5.4). The q ~ 1 behavior of Z can be 
computed directly from the expression of the branching functions as infinite 
series in q.{38) Since these series are a direct consequence of the infrared 
momentum restrictions, the influence of the many-body effects is apparent. 
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These momentum restrictions can only be seen by imposing an explicit 
cutoff on the problem. 

The above argument has relied only on a one-length-scale scaling 
argument and is valid for any set of momentum restrictions N~a in (5.4). 
Moreover, the argument has not identified the coefficient c of (5.5) with the 
central charge which is obtained from the q --* 0 behavior of the branching 
functions. However, for the cases where N~p is given by an inverse Cartan 
matrix, the q - ,  0 and the q ~ 1 behaviors are related by the property of 
modular covariance, which states that if we define z as q = e 2~i~, then for a 
set of branching functions bk(*) 

bk(-- l/q) = ~ M~,,bt(v) (5.11) 
l 

where the functions Mk, t are independent of ,. Thus the q -~ 1 behavior of 
the branching functions is given in terms of the q ~ 0 behavior. This 
behavior is always q-C/24 + hk, where hk is the conformal dimension and c is 
determined from the finite-size correction of the ground-state energy of 
(3.2). The right-hand side of (5.11) will thus be dominated by the term with 
the smallest hk. In particular, if the smallest hk is zero, the formula (5.5) 
results. 

For systems described by conformal field theory, the partition function 
is modular invariant, and the branching functions modular covariant. This 
property allows us to compute the specific heat from the q ~ 0 behavior of 
the branching functions. However, from the point of view of the momen- 
tum restrictions (5.4), this property is not necessary, and the specific heat 
can be computed directly from the q--. 1 behavior. It is an unsolved 
problem to determine directly from (5.4) which momentum restriction rules 
N~a will lead to the modular covariance property (5.11). 

5.3. Osci l la t ions 

One of the striking features of Sections 3 and 4 is the fact that the 
branching functions b ~ (with conformal dimension 3/4) and b~ (with 
conformal dimension 1/12)are obtained with a macroscopic (order-one) 
momentum shift from the ground state of AP = n. This results from the 
feature found in ref. 13 that the energies ezs(P ) [-e_zs(P)] vanish at 3n 
and n. These macroscopic momentum shifts are expected to give rise to 
oscillatory contributions to the correlation functions of the primary 
operators of b ~ and b~. On the lattice the oscillatory term should be 
(--1) N, where N is the separation of the operators. These microscopic 
oscillations are perhaps unusual for conformal field theories, but are in fact 
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expected if we make the observation that the antiferromagnetic 3-state 
Potts model lies deep inside the incommensurate phase of the chiral Ports 
model, (16'39) which is characterized by oscillatory correlations. (4~ 

5.4. Lee-Yang Edge 

An interesting property of the branching functions (3.13) and (4.16) 
obtains if we consider only the terms where mzs = m _zs  = O, where the sums 
reduce to the two sums 

and 

2 qm.~ 
S O = 

m,~=0 (q)m,, 
(5.12a) 

qm,,s(m,,s + 1 ) 
S = z_. (5.12b) 1 

m n s = O  (q),~,s 

These are the famous sums of Rogers-Ramanujan. (4z'44) They become 
modular functions if we multiply by powers of q and consider 

Cl,3(~) = q-1/6~ and Cl, l(r) = q11/6~ (5.13) 

which, in fact, are shown in refs. 42-44 to be the two characters of the 
nonunitary minimal model (z) with p = 5 and p ' =  2 

q -  1/24 
Cr, s(q)--O-- @ ~ {q(Znpp'+rp--sP')2/4pp'--q (znpp'+rp+sp')2/4pp' } (5.14) 

n =  - -oo  

This model has been identified (18'19) with the field theory that describes the 
behavior at the Lee Yang edge of the Ising model. (z~ Thus there is a sense 
in which we may say that the field theory for the Lee-Yang edge is 
obtained by adding a perturbation to the 3-state antiferromagnetic Potts 
chain which makes the ___ 2s excitations massive without affecting the ns 
excitations. 

It is also interesting to note that the q --* 1 behavior of the sums (5.12) 
can be calculated directly without recourse to the modular transformation 
(5.11) by a method that makes contact with dilogarithms. As an example, 
we consider explicitly So, which we write in the form obtained directly 
from (3.10), 

So= ~ ~ P d ( m , n ) q b q  ~m/z)(m-') (5.15) 
m ~ O  n ~ O  
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(where the subscript ns has been dropped for simplicity). To study the limit 
q-+ 1, we first use the integral representation 

1 ~zmd~Z+ll~I ( l+zq ' )  Pa(rn' n)qn =2-~i 
n = O  l = 1  

(5.16) 

and hence 

with 

a s  

S~ =~m'l~ dz I~I ( l + z q t ) - z  l=l . . . .  ~ q{"/2)~ (5.17) 

The sum over m is expressed in terms of the Jacobi theta function (45) 

02(/) ' q )=  ~, q(m-U2)2eiZ(2m 1)v ( 5 . 1 8 )  

m =  - o r  

~ ,  q(m/2)(m -- l ) z - -m = q- I /8Z1/202(U ' q l / 2 )  (5.19) 
m= --oo 

e i=~ = z -  1/2 (5.20) 

we find 

1 r & ~ .  So=-~--~i~-~)=l (1 +zq')q-1/Sz~/202(v, ql/2) (5.21) 

Then, using the product representation 

02(v, qm)=q'/8(z~/g+z-'/2) ~I (1-qn)(l+q'*z)(l+q "z 1) (5.22) 
n = l  

So=ex p l n ( 1 - q  ) ~ 7- 
n 1 

xexp {21n(l+zq~)+ln(l+z ~q~) 
n 1 

(5.23) 

in the sum (5.15). We note that (5.16) vanishes if m <0. Thus we extend 
the lower limit of the sum over m from zero to - o e  and interchange the 
summation and integration to obtain 
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We may now study the behavior of So as q --* 1 by replacing the sums 
in (5.23) by integrals. Thus, using the definition q = e -2~v/MkBT and setting 

2roy 
x = - -  (5.24) MkB T 

we find 

So ~ exp (~MkB2~v T 3o~ dx ln(1 - e-X)} 

l fdz x--y-(z+1) 
27ti z 

~Mk"T f ~ dx {2 ln(1 +ze X)+ln(1 --[-z--le--X)}} (5.25) 
x e x p (  27iv 3o 

The integral over z may now be evaluated by steepest descents. The 
steepest descent point occurs at the values of z that satisfy 

ln(1 + z )  2 =ln(1  + z  -1) (5.26) 

and thus either z-- - 1  o r  

1 " ~ Z = Z  - 1  (5.27) 

and hence we find that the steepest descents point is 

z = x/5 - 1 (5.28) 
2 

Thus we have 

~MkBT ~176 dx {ln( 1 I n ( l +  S ~  2~v fo - e - X ) + 2  & e-x) 

+ l n  (1 + ~ e - X ) } }  (5.29) 

which, if we define 

t=e -~ (5.30) 

and recall the definition (46) of the dilogarithm 

i z dt ln(l  - t) Li2(z) ; (5.31) 
Jo 
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may be rewritten as 

[. Mk~ T 
2rcv { Li2(1) So e x p  

Then if we note the special values of the dilogarithm 

7~ 2 
Li2(1) = ~ -  

Li2 ( ~ - 2 ~ )  = 

Li 2 1 2 x f 5  ) . . . .  

(5.33a) 

we obtain the result 

TC 2 1 2 

10 ln2 (5.33c) 

Mku T~ 
So~exp  30v (5.34) 

The identical behavior is obtained for $1. Thus, with Z =  So(q)So(gl)+ 
Sl(q) SI(gl), we obtain from (5.5)-(5.9) an (effective) central charge of 2/5, 
which agrees with ref. 19. 

A P P E N D I X A .  G A U S S I A N  C O N S T R U C T I O N  OF T H E  
B R A N C H I N G  F U N C T I O N S  

The form of the branching function (2.27) may be simply obtained if 
we note that the Z4 parafermions with the diagonal (As) modular invariant 
partition function is known to be the r = (3/2) 1/2 point on the orbifold line 
of c =  1 conformal field theories (see, e.g., ref. 47). However, we are 
interested in the nondiagonal (D4) partition function, which contains the 
current operator of dimension (1, 0) in the spectrum. This model must 
therefore lie on the c = 1 Gaussian line at the compactification radius 
r = (3/2) 1/2. Indeed, consider the general Gaussian model partition function 

1 
Z(r) = - -  ~ q~'.~ ~",~ (A.1) 

t/(q) q(~]) . . . . . .  

where 

= + , , r  

l(m )2 
and A,,.,(r) = -~ 2r - nr (A.2) 
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and set r = (3/2) 1/2 to obtain 

( ( ~ ) 1 / 2 )  1 ~ 

Z tl(q) ~1(q) . . . . . .  

Rewriting the sum as 

1/2 _ _  1 

Z r/(q) ~](q) b=0 . . . . . .  
re+n=--brood6 

we see that 

with fm,n 

q3((m+ 3n)/6)2q 3((m- 3n)/6)2 (A.3) 

q3((m + n)/6)2ff13(m-n)/6) 2 (A.4) 

1/2 = _ _ 1  ~ f3,b(q)f3,b(gl) (A.5) 
Z r/(q) r/(O) b=o 

defined by (2.29). Then, nothing the symmetry 

f3,1 =f3,5 and f3,2 =f3,4 (A.6) 

we obtain precisely the Z p f  4 of (1.10) with the expressions of (2.27) for 
b ~  ~ b ~ b 2, and b 2. 

A P P E N D I X  B. B R A N C H I N G  F U N C T I O N S  OF 
(A(31))1 x ( A~ /l,~"3ua(1))z 

The branching functions (2.27) can also be expressed as a three- 
dimensional sum in the following way. (3~ Let c~;, i = 1, 2, 3, be the simple 
roots of A3. Then 

(~i, O~j) = Ci, j (B.1) 

where c is the Cartan matrix of A3 

c =  - 1  2 - 

0 - 1  

(B.2) 

C 1 Let 2 i be the fundamental weights of /13, SO that ;~j=Zk j,k ak. The 
dominant weights a (k) of level k are defined to be 

3 3 
a (k)= ~ ai)~i, ai~Z, ai>~O, ~ ai<<.k (B.3) 

i=1 i=l 
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Let r = a ( 1 ) + p  and s = a ( 2 ) + p ,  where p=~2 i2  i. Then the following 
branching functions are identical with (2.27): 

1 b,~=..-5 ~ ~ det(w) q 130k-6r+5w(s)12/60 (B.4) 
' ?~ k ~ Q  w e  W 

where W is the Weyl group of A 3, generated by the three simple reflections 

ai(fl) = fl -- (e~, fl)c~i, i =  1, 2, 3 
(B.5) 

This group has 24 elements made up of powers of the simple reflections, 
and det(w)= _+1, depending on whether the minimum number of simple 
reflections making up the element w is even or odd. Q is the root lattice of 
A3, i.e., k =)Zimi~;,  and the sUmZk~Q is thus a sum over m~, i= 1, 2, 3, 
from - ~  to oe. 

Equation (B.4) gives seven unique branching functions, but only five 
appear in our model: these can be obtained by setting r = p and choosing 
the following a (2) = s - p: 

f o, b,,s=b ~ h ,s=0 
242, b~,~ = b ~ h,,~ = 1 

a (2)= ~241, br, s = b ~ h,,~ = 3/4 

~ 22 b,, s = b~, h~,~ = 1/12 

41 + 23, b,,s = b 2, h r ,  s = 1/3 

(B.6) 

Here, the conformal dimension h,,s is defined to be 

1 I - 6 r + 5 s [  2 
hr's - 12 + 60 (B.7) 

The three-dimensional sum (B.4) is to be compared with the expres- 
sions t3.13) and (4.16) of the text. We note that the sum (B.4) has a power 
q~ 30mj and thus the powers of q grow much more rapidly as a function of 
mj than do (3.13) and (4.16). Note also that when the sum over W is per- 
formed, (B.4) contains 24 triple sums, whereas (3.13) has only one and 
(4.16) has two. 
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